
fl

Overview

EXPRESS-X Tutorial
PDES, Inc. Offsite

March 11, 1998

John D. Valois
valois@steptools.com

STEP Tools, Inc.
Rensselaer Technology Park

Troy, New York 12180

(518) 276-2848 (518) 276-8471 fax
info@steptools.com http://www.steptools.com

STEP Tools, Inc.

• Introduction and background
• What is a mapping language?

• What is it good for?
• When can I get one?

• First version of EXPRESS-X
• Fundamental principles and capabilities
• Shortcomings

• Next version of EXPRESS-X
• Fundamental principles and capabilities

1

What is it? STEP Tools, Inc.

A mapping language:

• Allows formal specification of how elements
of two data models are related
• Entities, attribute values, relationships are included
• Constraints are not

• It is implementable
• Has an execution model

• It is not:
• A programming language
• A replacement for the SDAI

Out of scope STEP Tools, Inc.

• Mapping of data defined using means other than
EXPRESS

• Mapping of data defined using the second edition
of EXPRESS

• Identification of the version of an EXPRESS
schema

• Graphical representation

2

Applications STEP Tools, Inc.

A mapping language can be used to specify:

• Translation between different models

• Migration between versions of a model

• Interoperability between models

• High-level (ARM, business object, etc.) views

• Interfaces to legacy data ("pull" mapping)

Early Users STEP Tools, Inc.

NIIIP Project
(National Industrial Information Infrastructure Protocols)

• Defining high-level views for implementing
business objects based on STEP.

STEP -+ EXPRESS-X -+
Data Mappings

Server

3

Business
Object

Client

Early Users STEP Tools, Inc.

PDES, Inc. Electromechanical Pilot
• Mapping IDF into AP210

IDF
Parser

t

. -. -. -. - . -. -·-. -. -· - . - . -. -. -· -. -. -. -. -. -. -. - . - . -. -. -. -. -
!

IIDFi -+ [AP 210) j
~ ARM I

~ ,(2) i

IAP210) -+ 8P210
~

I . -. - . - . -. -. -. -· -. -. - . - . -·-. -· -·-. -. -. - . - . -· -. -. -· -. -. - . - .

Part 21 Two-stage mapping

Early Users

PCALS AP227 Project
• Exchange using either AIM or ARM

Prime
Contractor

Part 21

STEP Tools, Inc.

--~~~~·~~~~--
Sub

Contractor
Sub

Contractor

4

Sub
Contractor

Early Users STEP Tools, Inc.

• Others:

• VA V project (EuroSTEP, EPM)

• JSTEP HLDAI project

• POSC PML

Current Status STEP Tools, Inc.

When will it be ready?

• How did we get where we are

• What is happening now

• What will happen in near future

5

Current Status STEP Tools, Inc.

Pre-history

• EXPRESS-V
• Developed by RPI and STEP Tools, Inc.
• Goal: High-level "views" of STEP data.

• EXPRESS-M
• Developed by Ian Bailey and CIMIO.
• Goal: Translation of legacy data.

• BRITIV
• Developed by Gunter Sauter and Daimler-Benz.
• Goal: "Pull" mapping of legacy data.

Current Status STEP Tools, Inc.

• June 1996 {Kobe)
• PWI resolution passed

• August 1996
• First version (WG11 N002), combining:

• EXPRESS-V
• EXPRESS-M
• Expressions and statements from EXPRESS

• October 1996 {Toronto)
• Requirements gathering, issue log initiated

6

Overview of the First Version STEP Tools, Inc.

• Mapping consist of:
• EXPRESS procedural language
• High-level query and iteration constructs

• Shortcomings:
• Inverse mappings difficult/impossible to derive

• Pull mappings difficult or impossible

• Relationships difficult to map
• No way to create complex entity instances

• Other requirements

Current Status

• March 1997 {Chester)
• June 1997 {San Diego)

• Public demonstrations of N002
implementations

STEP Tools, Inc.

• At least three commercial implementations:
• EPM
• CIMIO
• STEP Tools, Inc.

• September 1997 (Troy)

• Workshop

7

View Mapping STEP Tools, Inc.

• Data is reorganized
• Named, reusable query

• References to underlying data

. -·· -. -. -. - . -. -. -. - . -. -. - . -. -. -. -.
I

!

io
<(.

Part_ version

•Shape

•Owner

•Approvals
• • <(i

i
i
i
i

·-·-·-·-·-·- ·-·-·-·-·-·-·-·-·- i

<(

D

Push Mapping STEP Tools, Inc.

• Batch translation; all or nothing
• May be highly procedural
• Not necessarily reversible

Mapping

8

Pull Mapping STEP Tools, Inc.

• Translation is on demand
• Important when source data size is large

• Mappings can be combined

~ -·-. -. -. - . -. -·-. -. -·-· --~
I

i
i

Ell•. Mapping

!
I

i
i

.. -. - . - . - . - . -. -. -. -. -. -..
New

Application

Current Status

• February 1998 (Orlando)
• 1st draft of next version

• June 1998 (Bad Aibling)
• Wider distribution of document
• Enable vendor implementation
• Begin qualification process

• TBA

• NWI ballot with CD

g

• •
Legacy

Data
Store

STEP Tools, Inc.

First Version STEP Tools, Inc.

What is a "mapping"?

• Define one or more schema instances.

• A data set, like a Part 21 file.

• May have more than one based on same
schema.

• Data may or may not already exist.

• No explicit notion of source or target.

Fundamental Principles STEP Tools, Inc.

• Mappings create new instances.

• Created in a target schema instance.

• Based on one or more source instances.
• May also create manually instantiated

instances "out of thin air".

• Source instances may have a selection criteria
based on attribute values (logical expression).

• New instance is populated by a sequence of
EXPRESS statements.

10

Fundamental Principles STEP Tools, Inc.

• Mappings may also make a second_pass over the
data.

• Like first pass, but no instance is created.

• Intent: enable population of target relationships.

• Can be used more creatively as well.

Fundamental Principles STEP Tools, Inc.

• Other odds and ends:

• Ability to define "groups" of instances.

• Handful of extensions to EXPRESS statements
and expressions.

• Ability to create and destroy instances at the
statement level.

• Ability to iterate over source data at statement
level.

11

SCHEMA_MAP Declaration STEP Tools, Inc.

• Highest level scoping construct.

• Collection of:
• Schema instance declarations.
• First pass (creation) mapping constructs.
• Second pass mapping constructs.
• Other definitions:

• EXPRESS functions, procedures, etc.

• Implicitly defines the process for executing the
mapping.

SCHEMA_MAP Syntax STEP Tools, Inc.

SCHEMA_MAP schema_map_name;

• Interface specifications
• Constant declarations
• Global block
• Mapping declarations, EXPRESS declarations

END_SCHEMA_MAP;

12

GLOBAL Declaration STEP Tools, Inc.

• Used to declare:
• Schema instances
• Manually instantiated instances

SCHEMA_MAP map_name;

GLOBAL
DECLARE source INSTANCE OF source_schema;

DECLARE target INSTANCE OF target_schema;

END_GLOBAL;

GLOBAL Declaration STEP Tools, Inc.

• Manually instantiated instances have no
corresponding source data

• Useful for application protocol "context" entities,
etc.

13

Extended Identifiers STEP Tools, Inc.

• Used to specify:

• The scope containing the declaration of an
identifier's type.

• The schema instance in which to find/create
the data.

• Example:
schema_name::identifier

• We will see this in other contexts as well.

Example STEP Tools, Inc.

SCHEMA_MAP map;

GLOBAL

DECLARE source INSTANCE OF arm_schema;

DECLARE target INSTANCE OF aim_schema;

#target::app_context_instance =
application_context(•••);

END_GLOBAL;

END_SCHEMA_MAP;

14

VIEW Declaration STEP Tools, Inc.

• First pass mapping construct; creates instances.

• Header declares:
• Type of instance to create.

• Target schema instance.
• Source instances {types and schema

instances).
• Source instance selection criteria.

• Body: sequence of EXPRESS statements.
• Typically assignment statements,

but others useful as well.

VIEW Declaration

Parts of a VIEW declaration:

VIEW

• target entity specification

STEP Tools, Inc.

• source data specification {"from" clause)
• source constraints {"when" clause)

BEG:IN_V:IEW

• EXPRESS statements to populate target entity
END_V:IEW;

15

Example

VIEW da

FROM (

STEP Tools, Inc.

target::dated_approval;

apo: source::approval_person_organization,
d: source::cc_design_date_and_time_assignment)

WHEN

apo IN d.items;

d.role = •sign_off_date•;

BEGIN_VIEW

year_approved := d.assigned_date_and_time

.date_component

.year_component;

END_VIEW;

Execution Model STEP Tools, Inc.

• When are target instances created?

• Iterate over all combinations of source
instances {Cartesian product).

• Ignore those that do not satisfy all domain
rules in the WHEN clause.

• For each that does, instantiate a target
instance, and

• Execute the body.

16

Source Instance Types STEP Tools, Inc.

• Note on source instances:

• Includes both instances of explicit type
and subtypes, complex instances.

DECLARE s INSTANCE OF some_schema;

FROM (x s: :t)

• Will iterate over:
• All instances x in schema instances;

• Satisfying:
'SOME_SCHEMA.T' IN TYPEOF(x)

Example

VIEW •••

FROM (

STEP Tools, Inc.

apo: source::approval_person_organization,
d: source::cc_design_date_and_time_assigmnent)

WHEN

apo IN d.items;

d.role = •sign_off_date•;

• Examine all pairs of instances
of the two entities (and subtypes)

• Eliminate:
• Those not related by items attribute
• Those where role is not correct

17

VIEW Body

• Essentially an EXPRESS procedure
(may define local variables, etc.}

STEP Tools, Inc.

• May use any EXPRESS statement or expression.

• Useful extensions:

• Enhanced assignment operators.
• Explicit instantiation.
• Iteration over a population.

Enhanced Assignment STEP Tools, Inc.

• Two additional operators.

• Aggregate addition: • += •

• Useful to build up aggregate attributes,
usually within some kind of loop.

• Aggregate removal: • - = •

• Not well motivated or used in practice.

18

Explicit Instantiation STEP Tools, Inc.

• The NEW statement creates a new instance.

• Must specify an I-value expression.

• Example
VI~ d: target::date_and_time;

FROM •••

BEGIN_VIEW
NEW d.date_component;

END_VIEW;

date_component
j date_and_time I

.__I --J; date 1
··-·-·-·-·-· .

Iteration Over a Population STEP Tools, Inc.

• Iterates over combinations of instances that
match a selection criteria.

• Similar to the FROM/WHEN header,
but at the statement level.

FROM

• source specification
WHEN

• constraints
BEGIN

• statements
END;

19

Example STEP Tools, Inc.

• What are the roles of the dates assigned?

VIEW da: target::dated_approval;
FROM (

apo: source::approval_person_organization)

WHEN TRUE;

BEGIN_VIEW

FROM (d: source::date_and_time_assignment)

WHEN apo IN d.items;

BEGIN

da.date_roles += d.role;

END;

END_VIEW;

Example

items

date_and_time_assignment
role

date_time_role

items

date_and_time_assignment
role

date_time_role

STEP Tools, Inc.

approval_person_organization

20

items

date_and_time_assignment
role

date_time_role

Other Extensions

• WHEN statement:
• Like EXPRESS IF ... THEN ...

WHEN (logical_expression)
BEGIN

statements
END;

• DELETE statement:
• Destroys instances.

STEP Tools, Inc.

• Not well motivated or used in practice.

IS Operator STEP Tools, Inc.

• Shortcut logical operator.

DECLARE s INSTANCE OF some_schema;

x IS s: :t

is equivalent to

'SOME_SCHEMA.T' IN TYPEOF(x)

21

Casting STEP Tools, Inc.

• EXPRESS-M concept, not well understood or
described in the document.

• Intent: perform conversion using appropriate
function or VIEW declaration.

• This concept has been adopted
in a more general form into the next version.

Casting Example

ENTITY fahrenheit;

value: REAL;

END_ENTITY;

ENTITY object;

temp: fahrenheit;

END_ENTITY;

22

STEP Tools, Inc.

ENTITY Celsius;

value: REAL;

END_ENTITY;

ENTITY thing;

temp: celsius;

END_ENTITY;

Casting Example STEP Tools, Inc.

VIEW f: target::fahrenheit;

FROM (c: source::celsius) WHEN TRUE;

BEGIN_VIEW

£.value:= c.value * 9/5 + 32;

END_VIEW;

VIEW obj : target::object;

FROM (t: source::thing) WHEN TRUE;

BEGIN_VIEW

obj.temp

END_VIEW;

Coercion

• Another EXPRESS-M concept,

STEP Tools, Inc.

not well suited to the EXPRESS-X paradigm.

• EXPRESS-M supported implicit instantiation;
EXPRESS-X does not.

• Used with assignment statements to control
instantiation of subtypes and SELECT base
types.

23

Coercion Example

ENTITY polygon;

edges: LIST OF edge;

END_ENTITY;

STEP Tools, Inc.

ENTITY edge SUPERTYPE OF

ONEOF(solid, dashed);

END_ENTITY;

ENTITY solid;

thick: INTEGER;

END_ENTITY;

Coercion Example

ENTITY dashed;

size: INTEGER;

END_ENTITY;

STEP Tools, Inc.

VIEW p: source::polygon;

FROM •••

BEGIN_VIEW

((dashed)) edges[l].size := 1;

END_VIEW;

• Intent is to implicitly instantiate a dashed edge.

• Specification is unclear and does not generalize
(for example, to nested selects).

24

COMPOSE Declaration STEP Tools, Inc.

• Second pass mapping construct; populate
attributes in previously instantiated entities.

• Header and body identical to VIEW
(FROM clause is optional).

COMPOSE

• target entity specification
• optional additional source data specification

• source constraints
BEG:IN_COMPOSE

• EXPRESS statements to populate target entity
END_COMPOSE;

Example STEP Tools, Inc.

• COMPOSE is useful for populating relationships.

COMPOSE h: target::head_of_household;

WHEN TRUE;

BEG:IN_COMPOSE

FROM (d: target::dependent)

WHEN (h.family_name = d.family_name);

BEGIN

h.dependents += d;

END;

END_COMPOSE;

25

MEMBER Declaration STEP Tools, Inc.

• Specifies logical groups or units of entities.

• Allows defining:
• What attributes are included.
• What attributes are excluded.

• Definition is unclear, difficult to implement.

• Not well motivated, or used in practice.

Goals for Next Version STEP Tools, Inc.

• More declarative language (vs. procedural)
• "What", not "how", to map
• Enable inverse mappings
• Enable pull mappings

• Better method of mapping relationships

• Explicit binding

• Fix some technical flaws
• E.g., inability to specify complex entities

• Meet further identified requirements

26

Next Version STEP Tools, Inc.

What is a mapping?

Two basic capabilities:

• Define views over the underlying data.

• Define declarative maps to another EXPRESS
schema.

Also want to retain the power and flexibility
of procedural mapping. ·

Views STEP Tools, Inc.

• Views can be specified without an explicit view
schema

• We can think of this as:
• A view is like a function
• A view is like a query

• A view is like a "virtual entity"

• A view is a collection of references to the
underlying data

• A different way of organizing existing data

• A view does not create new data!

27

Fundamental Principles

Extents

• An extent is a set of "entity-like"
conglomerates of data

STEP Tools, Inc.

• A member of an extent consists of one or more
references ("attributes") to underlying data

• An entity defines an implicit extent
• Each entity instance is a member of the extent

• A view defines an explicit extent,
and the "attributes" of its members

VIEW Declaration

Example VIEW

STEP Tools, Inc.

VIEW person_and_role_in_organization
FROM pao: person_and_organization,

ccdpaoa: cc_design_person_and_organization_assignment

WHERE
ccdpaoa.assigned_person~and_organization :=: pao;

SELECT
person
org
role

END_VIEW;

:= pao.the_person;
:= pao.the_organizaion;
:= ccdpaoa.role.name;

28

VIEW Declaration STEP Tools, Inc.

Each member of the extent corresponds to a
collection of underlying data: ·

Person_and_role_in_organization
~·-- ·- ;

role

person_and_organization_role
name

label

I

I

I

! . - . _!

Fundamental Principles STEP Tools, Inc.

Explicit Binding

• Once an extent has been defined, we can refer
to individual members

• We reference a particular member by
specifying the source instances from which
it derives

• This makes it easy to specify relationships

29

Example

VIEW xyz_point

FROM p: cartesian_point;

SELECT

x := p.coordinates[l];

y := p.coordinates[2];

z := p.coordinates[3];

END_VIEW;

VIEW point_on_line

FROM 1: line;

SELECT

STEP Tools, Inc.

the_point := xyz_point(l.pnt);

END_VIEW;

Fundamental Principles STEP Tools, Inc.

Partitions

• A view can be derived in more than one way

• Each possibility is called a partition

30

Example STEP Tools, Inc.

• An "organization" is either a person, an
organization, or a person within an organization

VIEW arm_organization
PARTITION one:

FROM (p: person)

PARTITION two:
FROM (o: organization)

PARTITION three:
FROM (po: person_and_organization)

END_VIEW;

MAP Declaration STEP Tools, Inc.

• Specifies how a target entity is derived from
the source schema

• Similar to VIEW in the first version
• Target entity
• Source entities
• Query constraint

• Body is composed of:

• Attribute value expressions
• Some declarative constructs for looping, etc.

• No general EXPRESS statements

31

MAP Declaration STEP Tools, Inc.

Other aspects of MAPS:

• UNIQUE clause enforces unique instantiation

• GROUP clause allows specifying multiple
target entity instances

• Explicit binding and partitioning

Type Maps STEP Tools, Inc.

• Specifies an implicit two-way conversion
between defined types.

TYPE dmark = REAL; END_TYPE;

TYPE dollar= REAL; END_TYPE;

TYPE_MAP dmark FROM dollar;

dmark := 1.5 * dollar;

dollar:= dmark I 1.5;

END_TYPE_MAP;

32

Other Stuff STEP Tools, Inc.

Other aspects of the next version:

• VIEWs can be built on top of other VIEWs,
and can be used in the FROM clause of MAPs

• No COMPOSE; use explicit binding instead

• There will be some kind of "inheritance"
allowed between MAP declarations

Conclusion STEP Tools, Inc.

When will EXPRESS-X solve all my problems?

• One year development cycle:
• Summer 1997
• Summer 1998
• Summer 1999

First version
Second version (CD?)
DIS? Third version?

• Implementations are available now
• Both pilot projects and commercial users

are experimenting with the language

• User feedback has been critical to the project

33

